REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 07040188

Public reporting burden for this collection of inft on is estimated to average 1 hour per responss, including the time for reviewing instructions, searching existing data sources, gathering and maintsining the data needed, and completing and
ble lection of i >

g o Send regarding this burden estimate of any other aspect of this colfection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for
Information Operations and Reports, 1215 Jeffarson Bavis Highway, Suite 1204, Arlington, VA 22202-4302, and tv the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank] 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
18 Apr 97

4. TITLE AND SUBTITLE
VENOCONSTRICTIVE CUFFS IMPEDE FLUID SHIFTS
DURING SIMULATED MICROGRAVITY

6. AUTHOR(S)
KJELL N. LINDGREN

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
COLORADO STATE UNIVERSITY

8. PERFORMING ORGANIZATION
REPORT NUMBER

97-022

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
DEPARTMENT OF THE AIR FORCE

AFIT/CI

2950 P STREET

WRIGHT-PATTERSON AFB OH 45433-7765

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release;
Distribution Unlimited

DISTRIZUTION STATEMENT K}

12h. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

9970428

I E—

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

19. SECURITY CLASSIFICATI
OF ABSTRACT

[————— | 3]

97
16. PRICE CODE

20. LIMITATION OF ABSTRACT

DTIC QUALITY INGPECTED 1

Standard Form 298 :S.I-iev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHSIDIOR, Oct 84




THESIS

VENOCONSTRICTIVE THIGH CUFFS IMPEDE FLUID

SHIFTS DURING SIMULATED MICROGRAVITY

Submitted by
Kjell N. Lindgren

Department of Physiology

In partial fulfillment of the requirements
for the Degree of Master of Science
Colorado State University
Fort Collins, Colorado

Fall 1996




Copyright®© by Kjell Norwood Lindgren 1996
All Rights Reserved




COLORADO STATE UNIVERSITY

November 13, 1996

WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER OUR

SUPERVISION BY KJELL N. LINDGREN ENTITLED VENOCONSTRICTIVE

THIGH CUFFS IMPEDE FLUID SHIFTS DURING SIMULATED MICROGRAVITY

BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE

OF MASTER OF SCIENCE.

Committee on Graduate Work

1Rt SR
it A0
(VP

Adviser

Department Head

ii




ABSTRACT OF THESIS

VENOCONSTRICTIVE CUFFS IMPEDE FLUID SHIFTS

DURING SIMULATED MICROGRAVITY

Long duration exposure to the microgravity environment has detrimental effects
on the human body. Primary to the changes seen in the cardiovascular system are
microgravity-induced fluid redistributions, the adaptation to which result in orthostatic
intolerance when re-exposed to normal gravity. Venoconstrictive cuffs could be used to
impede the fluid shifts and consequently change the overall distribution. Ten healthy
male subjects were exposed to a 2.5-hoﬁ tilt protocol which started in the standing
position, and was followed by 30 min supine, 30 min standing, 30 min supine, 30 min of
-12° head down tilt (HDT; to simulate microgravity), 15 min of HDT with
venoconstrictive thigh cuffs inflated, 10 more min of HDT, 5 min supine and 10 min
standing. Transition to the various tilt postures resulted in concomitant changes in leg
volume (Stand [STD] to Supine [SUP] -3.0%, SUP to HDT -2.0%). Inflation of the
venoconstrictive thigh cuffs to 50 mnng during simulated microgravity resulted in a

3.0% increase in leg volume from that seen in HDT. This increased leg volume
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represents a favorable fluid redistribution throughout the body. No changes in systemic
cardiovascular parameters were noted during cuff inflation.

Leg volumes were measured with anthropometric and strain-gauge
plethysmogfaphy. The more definitive anthropometric measurements were used to assess
strain gauge plethysmography as a valid index of leg volume changes using regression
(r=0.86, p<0.01) and paired t-test (p<0.05) analysis. Cuffs could potentially be used to
ameliorate the symptoms of congestion seen with Space Adaptation Syndrome and to
potentiate existing volutropic countermeasure protocols.

Kjell N. Lindgren
Department of Physiology
Colorado State University

Fort Collins, CO 80523
Fall, 1996
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CHAPTER I

INTRODUCTION

Ignited by the genius of Tsiolkovsky, Goddard and Oberth, fueled by the
hypergolic elements of the Cold War, restrained by the drag and friction of tragedy and
budget restraints, and boosted by recent discoveries of possible life on Mars, the human
exploration of spacé remains one of mankind’s greatest accomplishments and as well as
one of its greatest future challenges.

The human payload remains the most fragile (and valuable) element in any
manned mission. The preservation of that element is of the utmost priority, and as
missions become longer in duration, meeting that priority becomes more challenging. A
manned mission to Mars may take in excess of two years (84). Future hopes of
colonization will require even longer stays in a reduced gravity environment. Exposures
of this duration can have devastating effects on the human body if not checked by viable
countermeasures. No mission can be successful if the astronauts are unable to return to
the strain of earth’s gravity.

“The microgravity environment associated with spaceflight has a number of
significant effects on the human body, one of which is a net shift of fluid into the
thoracocephalic compartment. This fluid shift has a number of immediate and long term

implications. Initially, this cephalad fluid distribution causes signs of facial edema, eye




redness and “bird” legs and symptoms of congestion, stuffiness and headaches. This
headward fluid shift may also contribute to space motion sickness (4,65). Long term
cardiovascular implications include a net decrease in fluid volume, baroreflex attenuation,
a decrease in circulating red cell mass and possible increases in leg venous compliance.
A decreased overall fluid volume coupled with a diminished baroreceptor reflex and
increased venous pooling can cause orthostatic intolerance during re-exposure to normal
gravity. The possibility Qf syncopal episodes during re-entry and potential post-flight
emergencies are of operational concern. Therefore, the development of countermeasures
to combat cardiovascular deconditioning and orthostatic hypotension is necessary.

Lower body negative pressure (LBNP), exercise, medication, axial compression
suits and fluid loading have all been used in flight to minimize muscle atrophy, bone
demineralization, and cardiovascular deconditioning (17,32,77).  Other possible
countermeasures have béen evaluated, but discarded for lack of positive results, while
future countermeasures remain to be tested. The uses of venoconstrictive thigh cuffs
have not been adequately investigated. While prevalent in compliance and flow studies,
their possible applications in a microgravity environment have not been sufficiently
explored. Research in the 1960’s on venous occlusion cuff use in microgravity generated
various conflicting data and resulted in little further research (78). Cosmonauts have used
occlusive thigh cuffs, the “Bracelet”, in flight with beneficial reduction of congestion and
facial edema (3,56).

The use of venoconstrictive thigh cuffs essentially occludes venous flow from the
legs until the trapped upstream venous volume generates pressures greater than that

caused by the cuff. While flow resumes as normal, a greater distribution of blood and
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higher venous pressures may exist in the limb segments distal to the cuff. While this
volume trapping may not have any significant cardiovascular effects (e.g. on heart rate or
blood pressure), it could be used to create a more earth-like fluid distribution in the body.
This distribution could be potentially useful in 1) ameliorating the symptoms of
congestion and headache upon initial exposure to microgravity and 2) in potentiating
other existing countermeasure protocols prior to re-entry.

Hypothesis and Specific Aims. The purpose of this study was to investigate the
effects of venoconstrictive cuffs on the body’s fluid distribution during simulated
microgravity. This study was designed to test the following hypothesis: venoconstrictive
thigh cuffs, inflated to 50 mmHg during simulated microgravity (as modeled by -12°
head down tilt [HDTT]), will impede venous flow resulting in increased leg blood volumes
and thereby changing the whole body fluid distribution to one more similar to that seen
while standing in a normal-g environment. This hypothesis will be evaluated by
addressing the following specific aims:

1. Measure leg volume changes, using strain gauge, impedance and
anthropometric sleeve plethysmography, to determine the efficacy of
venoconstrictive thigh cuffs.

2. Describe the time course of leg volume changes during variousltilt exposures
and venoconstrictive cuff inflation.

3. Make a quantitative comparison of the plethysmography techniques.

4. Evaluate the systemic cardiovascular responses by tracking heart rate and

blood pressures.




CHAPTER II

REVIEW OF LITERATURE

Every human grows and develops uncier the strain of gravity. Organ systems,
organs, tissues and cells have all adapted to this pervasive force, utilizing it, combating it,
adjusting to it as a part of daily life. The absence of gravity then, demands subsequent
physiological response. Spaceflight and the inherent exposure to the microgravity
environment has numerous physiological effects on the human body.

The absence of gravity affects systems throughout the body ranging from the
neurovestibular apparatus to the cardiovascular system, from hormones and metabolism
to the very makeup of bones and muscles (61). The absence of a gravity vector causes a
variety of problems in perception and sensory function, leading to decreased
proprioceptive and postural awareness and debilitating Space Motion Sickness. The
muscles and bones which are usually constantly straining against the force of gravity, fall
into disuse and begin to atrophy. Some of the more noticeable changes, those that are

intimately related to this study, occur in the cardiovascular system.

Microgravity and the Cardiovascular System

In very general terms, the role of the cardiovascular system is to provide oxygen

and nutrients to the body and to remove CO,, metabolites and other waste products. Of
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the organs it supplies, none is more critical than the brain. With no storage capacity for
high-energy phosphate compounds, the brain cannot survive diminished perfusion and
oxygenation for even a short period of time (71). Within seconds the tissue becomes
ischemic and if blood flow is not restored, cellular dysfunction and unconsciousnessy
follow (68).

When moving from a supine to a standing position, a complex series of processes
occur in the healthy body to maintain perfusion of the brain, to adjust to the hydrostatic
challenge on the cardiovascular system. The hydrostatic component of vascular pressures
is evident in the fact that cerebral arteﬁal pressures are maintained at approximately 70
mmHg while arterial pressures at the feet can reach 200 mmHg (35).

Movement to the upright position causes a shift of 300-400 ml of fluid from the
central compartment to the legs (24,60). This postural decrease in central volume is
followed by decreases in stroke volume and cardiac output (68). These volume changes
are detected by the centrally located aortic and carotid baroreceptors which initiate
increased sympathetic outflow and vagal withdrawal (23). Elevated sympathetic tone
results in constriction of arteriolar precapillary sphincters, which increases total
peripheral resistance (TPR), and venoconstriction of the peripheral venous network,
which mobilizes the venous blood reserve (23). In addition, vagal withdrawal and
increased sympathetic tone cause an increase in heart rate, which, combined with
increased TPR, result in a maintenance of arterial blood pressure sufficient to perfuse the
brain and the rest of the body. The relationship between these hemodynamic variables is

illustrated by the following equations:




CO=HRxSV (Equation 1)
MAP =TPR x CO (Equation 2)
where CO = Cardiac output
- HR = Heart rate
SV = Stroke volume
MAP = Mean arterial pressure
TPR = Total peripheral resistance
By substituting the equation for cardiac output into the equation for mean arterial
pressure, it is easy to see the transient changes that occur to maintain arterial blood
pressure.
7TPR x THR x VSV = ¢>MAP (Equation 3)

In certain disease states the cardiovascular system does not adequately respond
to the orthostatic challenge (68). If postural decreases in volume are not met with
compensatory changes in HR and TPR, mean arterial pressure falls, followed by a
subsequent decrease in arterial pressures at the head. Cerebral préssures below 60 mmHg
generally result in presyncopal symptoms of dizziness, nausea and lightheadedness (68).
If pressures remain depressed, syncope will result: The inability to sustain upright
posture is called orthostatic intolerance. This postural hypotension is also seen in
astronauts returning from microgravity due to pathophysiological processes that will be
discussed later in this review.

General Physiology of Microgravity. A translocation of fluid from the lower body
into the thoracocephalic compartment upon exposure to the microgravity environment is

primary to the changes seen in the cardiovascular system. The signs and symptoms

associated with these physiological changes were among the first documented in manned




spaceflight (60). Anecdotal reports of facial edema, congestion, distended face and neck
veins and “bird legs” provide visible indication that fluid distributions have been
modified to some degree (60,71,73). This headward shift of fluid occurs as a result of the
absence of a gravitationally-induced hydrostatic gradient, but the associated physiological
changes may occur even before liftoff, as the astronauts spend at least two hours in a
recumbent “pre-launch” position, with their legs elevated above their hearts (27,35).
Indeed, Gotshall et al. (27) found that some measure of cardiovascular deconditioning
occurs after 2 hours in this HDT position.

Models of Microgravity. Physiological flight data are limited. The relatively few
number of subjects, combined with busy schedules and inconsistent conditions, have
caused investigators to develop ground-based methods of mimicking the physiological
responses  to microgravity (23). Numerous models have evolved over the years in an
effort to not only study the changes caused by spaceflight, but also to develop and test
countermeasures to those changes. Of these models, water immersion, supine bed rest
and head-down tilt (HDT) have been used most frequently (34,74). The supine position
eliminates a long axis hydrostatic gradient, while head-down tilt actually induces a slight
-G, headward hydrostatic column that mimics the cephalad fluid shift seen in
microgravity. In 1987, Tipton et al. (75) recommended -5° HDT for simulating the
general effects of microgravity. Nixon et al. (62) established the validity of the -5° HDT
model by comparing fluid distributions, and post-flight exercise and orthostatic tolerance
to Apollo and Skylab results. Conversely, Tipton et al. (74) observed that the water

immersion model is “not the most desirable because the Henry-Gauer reflex has not been




effectively demonstrated in space, the compression of soft tissue and the large pressure
gradient across the chest wall are not features of microgravity.” While all of these
models mimic many of the physiological changes seen in microgravity, they are not
perfect (35). Gravity still exerts a force on the body, and the weight of abdominal
contents and muscles can cause transmural pressures not seen in space (35). As a result,
the collection of flight data remains the most important tool in determining physiological
responses to a true microgravity environment.

Significance of Leg Volumes. Since ﬂﬁid shifts are one of the primary and
preeminent changes seen in microgravity, some measure of the degree of shifting is
essential. Deéreases in leg volume were qualitatively noticed early in the space program,
as evidenced by reports of ‘bird legs.” Since the physiological implications of this
“shifted” volume are important, especially with early concerns that cardiac performance
might be compromised by a volume/pressure overload, a method of measuring leg
volumes was developed. Because a large percentage of the fluid volume shifted in
microgravity comes from the dependent limbs, changes in leg volume can provide some
quantitative measure of fluid translocation. Made on an accessible part of the body, leg
volume measurements are non-invasive, easily performed and consequently serve as an
index of fluid shift both during ground simulations and in-flight.

Volume measurement methods. Strain-gauge, impedance and fluid plethysmo-
graphy and serial circumferential measurements are all accepted methods for leg volume
estimation. Fluid plethysmography estimates leg volumes via fluid displacement. While

it is probably the most definitive method of volume measurement, it is laborious and its




use is confined to ground studies. Many researchers utilize fluid plethysmography as a
standard for validating other measurement methods (70).

Whitney strain gauge plethysmography bases its volume estimation on the
circumferential changes seen in one plane of the maximal calf girth (86). In most cases a
dual strand mercury-in-silastic strain gauge is placed around the calf at its maximal girth.
As the calf circumference changes, the silastic tube changes in length and width. These
changes in tube dimension cause concurrent voltage and resistance changes across the
resident mercury column, which can be calculated out as percent change in leg
circumference (86).

The impedance plethysmograph estimates fluid volume shifts according to the
measured resistivity of each defined body segment (52,58,59). A small current is
introduced into a distal lead, and various electrodes along the body measure the resistance
or impedance to that current (52,58). Water is essentially the most conductive material in
the body. As water content in a certain segment of the body decreases, the measured
impedance in that segment will increase, and vice versa (58).

It is also possible to measure the volume of the leg using serial circumferential
measurements (43,60,70). These measurements generate a number of circular cross-
sectional areas that can be used to estimate a series of truncated conical volumes that
represent total leg volume (43,60,70). This plethysmographic method, like the those
mentioned before, is based on certain assumptions that must be accounted for in the final
data analysis.

Leg Volume Losses. Measurements obtained during five Shuttle missions indicate

a loss of about 1 liter from each leg, representing an 11.6% decrease in leg volume (60).
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Skylab and Apollo-Soyuz Test Project data are similar with 931 ml (12.2%) and 803 ml
(10%0) leg volume deficits, respectively (42,60,71). Moore et al. (63) demonstrated that
a greater percentage of the leg fluid shift came from the mid-thigh (69%) than frbm the
calf (31%). The thigh lost 12% of its volume while the calf only lost 9.4% (60). This
relative-loss distribution is different from that seen in HDT and bed rest studies, where
relatively more volume is lost from the calf (70).
The leg volume changes occur in two phases, an initial rapid decrease and a
slower component that occurs over the course of the mission (48,60). The abrupt nature
of the initial volume decrease can only be due a translocation of fluids, while the slower
component is probably due to extravascular fluid loss and muscle atrophy (36,60,72).
The rapid leg volume reduction and consequent facial edema and congestion is indicative
of the cephalad movement of fluid. The slower transcapillary component of leg volume
reduction is governed by Starling forces (34). Transition to microgravity, and the
“elimination of hydrostatic pressures, results in the predicted reduction of leg venous
pressures from ~90 to ~30 mmHg (34,46). The resultant decrease in capillary pressures
| elicits a shift from filtration to net reabsorption (51,73). Using the Wick—catheter
technique, Hargens (36) demonstrated decreased interstitial fluid pressures in the tibialis
anterior muscle and surrounding subcutaneous tissue after 4 hours of -5° HDT. And
trends towards decreased water content in the soleus muscle suggests a net fluid shift
from the léwer limb tissue to the vascular space (33,36). Based on HDT measurements,
Hargens (36) indicates that “interstitial fluid is lost at 12ml-h? from tissues that comprise

about 65% of lower-leg volume.”
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Nature of the Fluid Shift. Removal of the hydrostatic column essentially causes
fluid to shift according to the vascular compliance of tissues throughout the body (71). In
upright posture (normal g), the dependent venous vasculature is subjected to the
distending pressures of the hydrostatic column (approx. 90 mmHg) (34). The deep veins
of the legs are engorged with blood and the venous tissue operates on a relatively flat
portion of the compliance curve. Meanwhile, the upper venous network is exposed to
lesser pressures and as a result operates on a steeper portion of the compliance curve.
Removal of the hydrostatic component results in an equalization of venous pressures
throughout the body to about 30 mmHg (34). As the pressures equalize, volume moves
from the relatively non-compliant lower limbs to the available space in the more
compliant upper vasculature (71). Poor volume/flow regulating characteristics of the
upper body allow the “abnormal” volume distribution to remaiﬁ (34).

Leg Blood Flow in Simulated and Actual Microgravity. Panferova et al. (63)
measured blood flow velocity in the lower limbs during upright, supine, -12° and -22° -
HDT. They interpret their data to suggest a decrease in volumetric blood flow rate in the
legs, with a relatively smaller decrease in blood efflux than influx and that the higher
outflow is responsible for the overéll decrease in leg volume (63). They suggest that the
“dramatic slowing of peripheral blood flow and, consequently, diminished influx of blood
to the limbs...is attributable to central mechanisms of regulation and depended little on
local changes in hydrostatic pressure of fluid in the extremities.” Panferova et al. (63)
indicate that this limitation of influx is important in protecting the central volume and

heart from being overloaded. While relative differences in leg inflow and outflow
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certainly contribute to the shift of fluid to the central compartment, no available data
corroborate any centrally-mediated cardioprotective increase in arteriolar tone. On the
contrary, flow to the skeletal muscle of the leg is largely regulated by local control
mechanisms (5).

Skylab data suggest that blood flow to the legs is actually increased in
microgravity (72). Thornton et él. (72) propose that the increase in leg blood flow may
be secondary to the increased cardiac output observed in microgravity. These increased
blood flow measurements do not contradict data indicating decreased leg volumes. In the
absence of the distending pressures of the hydrostatic column, the deep capacitance veins
of the legs remain relatively empty and may serve more as a conduit than a storage
vessel.

Hemodynamic Changes. The cephalad fluid shift has widespread effects on the
cardiovascular system. Measurements taken during the first few mission days reveal
decreases in heart rate, diastolic blood pressure, central venous pressure (CVP), plasma
volume, total blood volume, red blood cell mass and total peripheral resistance
(1,7,23,46,67,69,76,89). Stroke volume, cardiac output and left ventricular end diastolic
dimensions are increased (7,66,69,89). These changes are all ostensibly initially related
to the increased central blood volume.

Of these changes, the in-flight decrease in CVP was a surprise to many
researchers (7). It was first hypothesized that the fluid shift-induced increase in central
blood volume would cause a subsequent increase in CVP (72). Catheteﬁzation data from

three subjects clearly show a decrease in CVP which Buckey et al. (7) suggest may be
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due to a combination of relaxation of the venous smooth muscle and a decrease in blood
volume.

Fluid Volume Changes. Decreases in blood and plasma volume have been noted
since the Gemini program (39). Data from shuttle missions SLS-1 and SLS-2 indicate a
17% decrease in plasma volume after only 22 hours in space (1,17). Data from SLS-2
also noted a 12% decrease in total blood volume at landing (76). Despite the dramatic
change in plasma volume, peripheral venous hematocrit did not change significantly.
Alfrey et al. (1) suggested that this may be due td the change in red blood cell size,
allowing more cells to be packed into a similar volume. However, estimated total body
hematocrit did increase by flight day 2 (76). A hemoconcentration-derived increase in
hematocrit would be expected due to rapid volume depletion without a commensurate
decrease in red blood cell mass (50). Hinghofer-Szalkay et al. (37) described similar
changes in plasma and blood density with head down and head up tilt. Essentially, the
greater the angle of tilt in either direction from supine, the denser the blood becomes (37).
Prior to landing, plasma volumes never return to pre-flight levels, suggesting that a new
homeostatic level, or set point, is established (50).

A number of processes contribute to these decreases in fluid volume. First of all,
centrally located volume receptors cannot differentiate between the exaggerated central
blood volume and an increase in total blood volume, and consequently initiate a
neurohumeral cascade to elicit a volume reduction via diuresis (13). However, no initial
diuresis has been documented in spaceflight (38,50). Astronauts have reported that the
recumbent, legs-elevated prelaunch position produces a diuresis, but these urinary

excretion volumes have not been recorded (7,34,38,60). To confound the data even
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further, many astronauts limit fluid intake prior to flight in an attempt to avoid the need to
urinate while waiting to launch (7). This decreased fluid intake, coupled with a possible
increase in insensible water loss, could contribute to a decreased plasma volume even
before exposure to microgravity (7).

Further decreases in plasma volume can be attributed to transéapillary fluid shifts
from the vascular compartment to the extravascular compartment in the upper body.
Studies conducted by Parazynski et al. (64) and Hargens et al. (34) suggest that the
capillaries in the upper body are thinner and have poor regulating characteristics as
compared to the capillaries found in the feet. If so, the higher cephalad pressure
generated by the fluid shift could promote the shift of protein rich fluid from the vascular
space (50). Leach et al. (50) propose that decreases in plasma and extracellular fluid
volume in view of unchanged total body water indicate an increase in intracellular fluid
volume.

The physiological changes seen in microgravity are appropriate to the
environment, and have a benign effect on the cardiovascular system (23,34). These
changes, however, are maladaptive in a normal gravity context, and can have deleterious
effects on cardiovascular performance upon return to Earth.

Postflight changes. The various cardiovascular adaptations to microgravity that
make an astronaut more susceptible to orthostatic hypotension when re-exposed to
normal gravity are collectively known as ‘cardiovascular deconditioning.” Researchers
generally attribute the incidence of orthostatic intolerance to three main components:
decreased blood volume (40,50,76), excessive peripheral venous pooling (9,16,72) and an

attenuation of the arterial baroreflex (20,21,22,32).
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Microgravity induéed hypovolemia.  First of all, the microgravity-induced
decreases in plasma and total blood volumes result in hypovolemia on Earth. Data from
SLS-1 indicate that plasma volume was still decreased 11% below preflight values, while
data from STS-40 show total blood volume at landing was decreased 12% (50,76).

Introduction of a hydrostatic gradient upon return to a normal-g environment
forces a percentage of the reduced total volume into the dependent vasculature, so that
volumes adequate for perfusion in microgravity are insufficient in normal-g. In essence
this reverse fluid shift causes a hypovolemic state which can result in decreased central
blood volume, stroke volume, cardiac output and arterial pressure. Inadequate perfusion
pressures at the brain then result in presyncopal symptoms of nausea, dizziness and
lightheadedness, i.e. orthostatic intolerance.

Venous pooling. A second possible component of cardiovascular cieconditioning
could be due to excessive peripheral pooling in a more compliant dependent venous
vasculature. The deep veins of the leg are responsible for ~85% of venous volume (10).
Many investigators (10,72) suggest that these veins have little intrinsic structure of their
own, and rely mainly on the surrounding musculature for compliance and capacitance
characteristics. Buckey et al. (10) determined that these ‘passive’ deep veins are
responsible for 90% of volume changes at low levels of occlusion (40 mmHg) and 51%
of the volume increases at higher occlusive pressures (100 mmHg). These capacitance
vessels rely on the surrounding muscle and connective tissue for structural support,
muscle tissue that loses tone and mass due to disuse atrophy both in simulated and actual
spaceflight (72). In fact, Convertino et al. (14,15,16) demonstrated that calf muscle cross

sectional area was significantly correlated with percent change in calf compliance. While
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it has been shown that high leg compliance is related to low orthostatic tolerance, there is
controversy as to whether simulated or actual microgravity really has any significant
effect on leg compliance (15,54,55,57,72). Still, even if the dependent veins are not more
compliant, and yet allow the same absolute volumes to pool in the legs, this fraction of
blood represents a larger percentage of the microgravity-reduced total blood volume and
orthostatic intolerance may result (8,9).

Baroreflex attenuation. A third component of orthostatic intolerance involves a
diminished arterial baroreflex response. Arterial blood pressure is challenged by postural
volume changes many timés a day in normal humans (23). Chronic lack of orthostatic
challenge in microgravity may result in a blunting of baroreceptor sensitivity (23,35).
Supine heart rate, systolic and diastolic blood pressures, plasma catecholamine levels, and
peripheral vascular resistance are all elevated postflight, consistent with overall
sympathoexcitation and vagal withdrawal (23). However, Buckey et al. (8) saw
inadequate heart rate and total peripheral resistance responses in astronauts who became
orthostatic during a post-flight operational stand test.. Fritsch-Yelle et al. (20,21,22,23)
described that while “heart rate increases are exaggerated from preflight values, stroke
volume, cardiac output, and peripheral vascular resistance are not, and arterial pressure is
not well maintained.” Whitson et al. (88) suggested a decrease in end organ
responsiveness, as increased levels of norepinephrine during post-flight standing failed to
elicit proportional changes in TPR. Buckey et al. (8) point out, however, that plasma
levels of hormone messenger do not reflect availability at the receptor level. All of these

inappropriate responses suggest some deficit in the arterial baroreflex arc.
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Countermeasures

In astronauts returning from the SLS-1 and SLS-2 missions, 64% were unable to
complete an operational stand test (29 minutes supine followed by 10 minutes standing)
(8). Fritsch-Yelle et al. (22) reported that 25% of astronauts that flew from 8-14 days had
presyncopal symptoms during stand tests or during shuttle egress. This incidence of
orthostatic intolerance is of operation concern.

Unlike previous “capsule” spacecraft, the space shuttle returns to the Earth in a
glider configuration, exposing its crew to up to 1.5 +G, during re-entry (61).
Cardiovascular deconditioning may impair an astronauts ability to respond to emergency
situations in the presence of gravitational stress. Likewise, in future long duration
missions of planetary exploration or colonization, astronauts must be able to withstand
gravitational stress and operational workloads. Compromised cardiovascular function, if
not addressed, will diminish the astronauts ability to perform and very possibly endanger
their lives.

In order to maintain the cardiovascular system and decrease the incidence of
postflight orthostatic intolerance, investigators have devised various countermeasures to
either slow the rate of deconditioning, or to prepare the individual for normal gravity
prior to re-entry. Some of the more productive countermeasures include fluid loading,
Lower Body Negative Pressure (LBNP), exercise, g-suits and medication.

Fluid loading. The fluid loading protocol specifically addresses the microgravity-
induced hypovolemia. Initial bedrest studies demonstrated that ingestion of isotonic
saline solutions (in the form of bouillon) increased subject tolerance to LBNP and

acceleratory stress, ostensibly by supporting the vascular volume (29,32,41). It was
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subsequently adopted for use on the shuttle, and became the first countermeasure
addressing microgravity-induced changes, to be applied acutely and meet with success
(11,32). The operational protocol involves ingesting a 1 gram salt tablet for every 4
ounces of water up to a total one liter of approximately isotonic saline (11,32). All of the
crewmembers who used the countermeasure completed the post-flight stand test, while
33% of those who did not use the countermeasure became presyncopal/syncopal (11,13).
Additionally, those astronauts who underwent fluid loading had lower standing heart
rates and regulated arterial blood pressure better than their non-CM associates (11,13).
While fluid loading proved to be beneficial, its effectiveness may be limited to missions
of under a week duration (17). Fluid loading failed to raise plasma volume after 7 days of
HDT and had no signiﬁcant‘ effect on orthostatic heart rate after 7 days of flight
(17,77,87).

LBNP. Lower body negative pressure (LBNP) was utilized to provide orthostatic
challenge to the cardiovascular system in microgravity. In this system, a rigid container
encompasses the lower body up to the iliac crest. A rubber skirt establishes a seal, below
which a negative pressure is introduced. The ‘vacuum’ essentially pulls fluid into the
lower body, inducing an orthostatic-like challenge on the cardiovascular sysfem, forcing
it to regulate arterial blood pressure. Operationaliy, the Skylab astronauts were exposed
to a 25-minute protocol with -10 mmHg steps down to a maximum vacuum of -50 mmHg
(42). Investigators reported its success in decreasing cardiovascular deconditioning
during spaceflight and bedrest (25,30,31).

LBNP was also conducted in conjunction with the fluid loading or ‘soak’

protocol. Crewmembers were subjected to 4 hours of LBNP at -30 mmHg with a
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standard fluid load of 1 liter isotonic saline given at the beginning of the protocol (67).
This resulted in increased orthostatic tolerance, as evidenced by decreased heart rate
responses to LBNP and increased plasma volumes for the subsequent 24 hours (13).
LBNP has been removed from operational use, however, as its benefits were outweighed
by time constraints, crew discomfort, and its awkward operation (Shao, personal
communication).

Other countermeasures include the use of exercise to decrease muscle and skeletal
atrophy, and modified g-suits to increase peripheral resistance and support blood
pressure. These and other countermeasures have met with measured success.

Venoconstrictive cuffs. Venous occlusion cuffs, essentially constrictive cuffs
placed around the ‘thighs to occlude venous flow, were investigated as a possible
countermeasure in the late 1960’s (6,12,28,56,78,79,80,81,82). While venoconstrictive
cuffs find widespread use in compliance and flow studies, they have no role in the current
countermeasure regimen (32,67,72).

Research conducted in the late 1940’s demonstrated that whole body oscillations
diminished the cardiovascular deconditioning seen with bedrest (86). Graveline (28)
suggested that the results of this intervention, which introduced intermittent hydrostatic
components to the vasculature with concomitant decreases in venous return, could be
mimicked with the intermittent inflation of peripheral occlusive tourniquets. The results
of his immersion study, which utilized venoconstrictive arm and leg cuffs, inflated to 60
mmHg in a one minute on/off cycle, seemed to verify his hypothesis. Subjects exposed
to this countermeasure regimen demonstrated relatively greater orthostatic tolerance in

post-exposure tilt tests than the non-cuffed controls. Vogt et al. (42) confirmed these
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results in a similar immersion study. Further research, however, yielded contrary results.
Several subsequent bedrest studies conducted by Vogt et al. (79,81,82,83) indicated that
combinations of leg cuffs, leg and arm cuffs, with various timing cycles afforded no
protection from cardiovascular deconditioning as established by tilt table tests. The
further evaluation of leg cuffs in spaceflight during Gemini V and Gemini VII yielded no
cardiovascular protection, leading Vogt et al. (83) to conclude that 1) there were no use
for cuffs, 2) that further evaluation of cuff configuration or timing cycles was not
warranted, and 3) that other means should be used to prevent cardiovascular
deconditioning. The protocols and results obtained in these studies suggest that the
researchers were strictly looking for hemodynamic changes and improved post-flight
orthostatic tolerance.

Little descriptive or quantitative research has been conducted since. The most
recent research was published by Katkov et al. (47) in 1981 and by Gazenko et al. (26) in
1982. Katkov et al. (47) demonstrated that venocclusive cuffs, inflated to 40 and 60
mmHg caused an increase in dorsum pedis venous pressure, a decrease in oxygenated
hemoglobin and an increase in the arteriovenous O, difference. Gazenko et al. (26)
described similar increases in venous pressure with no changes in arterial pressure during
application of mechanical and pneumatic lower extremity cuffs. They further quantified
the changes seen in central venous pressure (CVP) and pulmonary artery pressure (PAP)
among other variables. Mechanical extremity cuffs, applied to the upper thighs at 40 and
60 torr (aS measured by tissue pressure) during -20° HDT caused significant changes

from HDT baseline, that were similar (not significantly different) to hemodynamic
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variables seen during orthostasis (26). Pneumatic cuffs applied at the same pressures did
not have the same effect. While there were some hemodynamic changes, the values
remained significantly different from those seen during head up tilt. The authors
contribute the differences seen between mechanical and pneumatic cuffs to measurement
methods. The mechanical cuffs were measured with tissue pressures while pneumatic
cuffs were applied according to cuff pressures. They quantified the benefits of these cuffs
according to their ability to reduce CVP and PAP. But these variables have subsequently
been shown not to be elevated in microgravity (7). While Katkov et al. (47) and Gazenko
et al. (26) both assumed dependent venous volumes were increased with venous
occlusion, these changes were not measured.

Venoconstrictive thigh cuffs were utilized by cosmonauts, reportedly improving
“the health state of Soyuz-38 crewmembers who showed motion sickness” (56).
However, no quantitative analysis was performed, and cuff use was discontinued.

Nothiﬁg in the available literature quantifies the effect venoconstrictive cuffs may
have on microgravity-induced fluid distributions and the resultant symptoms of
" congestion, facial edema or even SMS. Similarly, the literature does not establish what
effects venoconstrictive cuffs may have in conjunction with established countermeasures,
such as LBNP, fluid loading or pharmacological interventions. The purpose of this study,
then, was to quantify leg volume changes seen with the inflation of venoconstrictive cuffs

to 50 mmHg during simulated microgravity (-12° HDT).
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CHAPTER III

MATERIALS AND METHODS

Subjects. Ten healthy male subjects (age 28 % 3.1 yrs, height 177.2 + 1.6 cm,
weight 75 + 2.8 kg, mean + S.E.) volunteered to participate in this study, which was
approved by the NASA Ames Human Research Institutionél Review Board and the
Colorado State University Human Research Committee. The details and risks associated
with the study were explained to each subject before written consent was obtained. The
subjects were healthy, normotensive nonsmokers with no history or symptoms of

cardiovascular or peripheral vascular disease.

Instrumentation. Blood pressure was monitored using two different methods.
Continuous measurements were made using the Pefiaz technique with a Finapres® finger
cuff (Ohmeda, Englewood, CO), while left arm Korotkoff sounds were auscultated and
recorded every five minutes. Heart rate was continuously monitored by the Finapres®,
and recorded every five minutes as the interval measurement. ECG was not used because
of concerns that the leads would have caused multiple grounding conflict with the
impedance plethysmography equipment.

Leg volume changes were measured using three different systems: impedance
plethysmography; ‘volume sleeve’ anthropometﬁc plethysmography§ and strain gauge

plethysmography:
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1) Impedance measurements, based on the impedance or resistivity of identified
body segments, were made using a specialized computer-controlled Tetra-polar High
Resolution Impedance Monitor (THRIM) (UFIL, Inc., Morro Bay, CA). After site
exposure, hair removal and alcohol prep, nine disposable ECG electrodes (3M, St. Paul,
MN) were placed along the length of the subjects’ right side, at the hand, wrist, elbow,
shoulder, iliac crest, upper thigh, knee, ankle and foot. Excluding the hand and foot
‘excitation’ leads, these electrodes essentially divided the body into 6 defined segments.
The THRIM .introduced a high frequency (~50 kHz), low amperage (0.1 mA rms)
constant electrical current between the hand and foot electrodes (59). The seven monitor
electrodes recorded simultaneous baseline resistances (R,) for each segment at a sampling
rate of .25 Hz.

Impedance plethysmography is based on serial segmental impedance
measurements. The introduction of an electrical current causes the body to act as a
volume conductor, with continuous lines of electricity distributed in three dimensional
paths (58). Changes in fluid volume and tissue characteristics have measurable effects on
this flow of electricity (52). Blood is the most conductive tissue in the body, so as the
volume of blood in a specified segment increases, the resistance, or impedance to
electrical flow is reduced (52). By making serial impedance measurements of a given
segment, a change in volume over time can Be established.

Generally, resistance in a given conductor is directly related to length and
resistivity factor (resistivity of lcm® of the subject material) and inversely related to

cross-sectional area (58) or:
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_pL

y (Equation 4)

where R = resistance (ohms)

p = electrical resistivity of the subject material/tissue (chm-cm)
L = length of the conductor or segment (cm)
A = cross-sectional area of the conductor/segment (cm”)

Since volume (V) =4L, multiplying Equation 4 by L/L results in:

R=— (Equations)

V=— (Equation 6)

Having measured the distance (L) between adjacent segment electrodes and
resistance with the plethysmograph, and by assuming a tissue resistivity factor of ~150
ohm-cm, segmenf volumes, and subsequently, volume changes can be calculated (58).

Unfortunately, during the course of the experimental protocol, the impedance-
computer interface experienced a number of framing errors and error loops. While a
triple plethysmograph comparison would have been interesting, the impedance data were
rendered unusable and will not be reported.

2) Anthropometric measurements were made using a ‘sleeve’ of 9 circumferential
‘non-distensible tape measures (6 below the knee, 3 above), in a system similar to that
described by Thornton et al. (70). This measurement method, developed by Jones et al.
(43), and validated by Thornton et al. (70) against a fluid plethysmograph (r=.995) is
based on a series of circumferential girth measurements along the leg. The leg is divided
into a number of segments, marked by proximal and distal measuring tapes. The
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resulting circumferential measurements can be used to calculate the area of a truncated
cone, that when summed with the other segment areas, provides an accurate total leg

volume (Figure 1 and Equations 7-9) (70).

circu e
R;r= circumjerence (Equation 7)
2z
R* + Rr+71?
Volume,,p,r; = ﬂh(——g—‘) (Equation 8)
Volume,,,, = Z Volume, g, s (Equation 9)

Figure 1. Volume estimation by serial truncated
cones. (Adapted from Thornton et al. [70])

The plethysmograph used in this study, the Anthropometric Sleeve
Plethysmograph (ASP) consisted of 9 horizontal tapes running through fixed apertures in
two nondistensible axial index strips. The horizontal tapes were separated by 6 cm
intervals (10 cm at the knee). The axial strips were taped medially and laterally on the
subjects right leg, to keep the circumferential tapes parallel and stable. Great care was

taken during the measurement process to avoid skew. Measurements, taken at S-minute
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intervals, were made against a metal friction bracket to 0.5 mm using a tensiometer to
ensure consistency. These individual data are presented in Appendix B. Only volumes
for the calf and lower two thirds of the thigh were measured, as the upper third of both
thighs were instrumented with venous occlusion cuffs. While this restricted volume
measurement will influence reported total leg volumes, it should have minimal effect on
percent change in leg volume.

The ASP system did not incorporate an elastic stocking foundation as deséribed
by Thomton et al. (70), which could potentially apply circumferential pressures to the leg,
thereby artificially reducing the volume measurements. The error introduced by
assuming that the human leg is shaped like a series of perfect cones is minimized by the
large number of segments and circumferential measurements used. Use of this method
also assumes that 1) the measured circumference is circular, 2) that it maintains this same
shape during volume changes, and 3) the changes are small, all of which are generally
true (86). The ASP, unlike strain gauge plethysmography, provided absolute volume
measurements, from which percent change could be calculated. Individual percent leg
volume change data are presented in Appendix A.

A dual strand, mercury-in-silastic strain gauge (Medasonics, Fremont, CA) was
placed around the maximal girth of the left calf. This plethysmography method, first
used by Whitney in 1953, correlates leg volume changes with the changes seen in one
plane of the maximal calf girth (86). The basis for this method is as follows (53).

The initial circumference of the calf is equal to the initial length (Lg) of the strain
gauge. This initial length is related to initial calf radius by the equation for the

circumference of a circle.
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Ly =27R, (Equation 10)

Changes in leg volume that occur after microgravity or tilt-induced fluid shifting
will change the radius of the limb cross-section to R; with a concomitant change in strain
gauge length to Lj. The chang'e in length (AL) is reflected in the equation:

AL =27AR (Equation 11)
where AR =R, - RO (Equation 12)
The change in the cross-sectional area of the limb then is calculated by:
A = 75(R12 - R(f) (Equation 13)
If Equation 12 is substituted into Equation 13 where R 1= AR + Ry then:
A= 7r[2R0AR‘+ (AR)Z] (Equation 14)
Changes in R are generally very small, so (AR)? can be excluded, resulting in:
A4 =27R,AR (Equation 15)
Substituting in Equations 10 and 11 results,in:

L,AL
2r

A = (Equation 16)

Finally, percent change in cross-sectional area (assumed to be proportional to
percent chahge in leg volume) is calculated by dividing both sides by 4 which yields:

A4 2AL
—= jon 17,
y L (Equation 17) |

With the strain gauge, as the circumference of the calf changes with volume, the
silastic tube changes in length, causing concurrent resistance changes across the mercury

column (52,86). The continuous voltage/resistance measurements were calculated by the
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computer to percent change in circumference. Strain gauge data were digitized
continuously at a sampling frequency of 1 Hz with a 286-based microcomputer
(SupersPort, Zenith, St. Joseph, MI) using data acquisition hardware (DAS-20,
Metrabyte, Taunton, MA) and software (Labtech Notebook, Wilmington, MA). Strain
gauge data were desampled by half, and a 30 unit moving average was applied to
eliminate noise (Microsoft Excel 7.0, Microsoft Corporation). These filtered individual
data are shown in Appendix C. While this method provides continuous réal-.time 6utput,
it makes a number of assumptions. It utilizes the same geometric assumptions as the
anthropometric method, i.e. the circumference of the leg is circular, it keeps the same
geometrical shape, the increase is small, etc. However, this method also assumes that the
circumference changes seen in the entire leg are identical to those seen in a single plane
of calf tissue, and the potential error is inherently obvious. This being the case, statistical
analysis of leg volume changes were performed on the more definitive anthropometric
measurements, while a comparative study was performed to determine the
appropriateness of using strain-gauge plethysfnography as an index of leg volume
changes.

Pneumatic occlusion cuffs were placed on the upper third of both thighs, as close
as possible to Poupart’s ligament. The cuffs remained loose until inflation to 50 mmHg,
which was accomplished in a2 smooth and rapid manner with an air COMpressor/reservoir.
The occlusive cuffs were connected by a common ‘Y’ valve so that pressures, which were
monitored using both analog and digital output, remained equal throughout inflation (See
Figure 2 for full instrument configuration). An occlusion pressure of 50 mmHg \was

chosen for a number of reasons. First of all, this is an occlusive pressure widely used by
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Figure 2. Full instrument configuration

researchers in compliance studies, and because it is below average diastolic blood
pressure, it has been demonstrated to impede venous flow while leaving arterial flow
unaffected (14,57,72). Secondly, venoconstrictive cuff research conducted by both
Katkov et al. (47) and Gazenko et al. (26) evaluated cuff pressures of 40 mmHg and 60
mmHg. Utilizing an average of their values allows a comparison of results while
investigating cardiovascular and volume changes at a previously unexamined pressure.
The subjects were instructed to remain as still as possible during data collection

prior to which they were familiarized with the tilt table and protocol. The subjects wore

29




loose, nonconstrictive clothing and room temperature was maintained at ~25°C for all
experimental runs.

Protocol. Anthropometric leg volume and hemodynamic data were taken after
five minutes of quiet standing. The subject was then placed in the- supine position on a
motorized tilt table and secured with a canvas strap. Both heels were blocked 10 cm by
foam pads to separate instrumentation from the table, and to reduce the small hydrostatic
gradient that still remains 1n the legs of a supine subject (70). Anthropometric and
hemodynamic data were taken every five minutes. After 30 minﬁtes (6 intervals) in the
supine position, during which the strain gauge plethysmograph was activated and zeroed,
the subject was tilted to 90° vertical standing. After 10 minutes of standing, the subject
was tilted back to the supine position. Thirty more minutes of supine exposure was
followed by rotation to -12° head down tilt (HDT). Aﬁer 30 minutes of HDT the
venoconstrictive cuffs were inflated and maintained at 50 mmHg for 15 minutes. ThlS
was followed by cuff deflation and an additional 10 minutes of HDT. The subject was
then rotated to 0° horizontal for 5 minutes as a safety precaution against syncope, and
then to the standing position for a final 10 minutes. This tilt protocol is graphically

illustrated below (Figure 3).

* D+ 3

] 30 60 90 120
Minutes

Figure 3. Graphic depiction of the tilt protocol
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The -12° HDT model was used to simulate microgravity in this study (Figure 4).
While -6° HDT is the current norm for modeling the physiological responses to
microgravity, Thornton et al. (70) observed that no current HDT model even comes close
to producing the magnitude of leg volume loss seen in space. Head down tilt studies

utilizing -5 to -12° have yielded leg volume deficits of up to -5.6% while more extreme

Figure 4. A subject being exposed to -12°HDT

tilts (-22°) caused -7.7% leg volume decreases (36,63,70). These tilt induced decreases
are half of the -10-14% leg volume decreases seen in space (60). However, Convertino et
al. (15) reported a 2% decrease in leg volume after 96 hours of -6° HDT while Panferova
et al. (63) described a 2.5% leg volume deficit after only 4 hours of -12° HDT. While
these differences are not dramatic, and there are conflicting data as to whether tilts
ranging from 0° to -12° HDT result in significantly greater leg volume deficits, it does
suggest that the -12° HDT causes greater fluid shifts. Additionally, Kakurin et al. (44)
demonstrated that -12° HDT was a better model for reproducing microgravity-like

responses than recumbent bedrest. Since the purpose of this study was intimately related
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to altered fluid distributions and leg volume losses, the -12° HDT model was deemed the
most likely to maximize leg volume losses, without the discomfort associated with the
-22° HDT model, and therefore the most suitable. While this degree of tilt can still be
unpleasant when experienced in long duration, the acute nature of the exposure limited
subject discomfort.

Statistical Analysis. Leg volumes and cuff efficacy. Statistical analysis of all the

data was performed on a 100 MHz Pentium (Intel Corporation, Santa Clara, CA) based
microcomputer (ACT, Ft. Collins, Colorado) with Microsoft Excel (Microsoft Corp.,

Redmond, WA) Analysis ToolPak (Greymatter International, Inc., Cambridge, MA).

The ASP-measured percent change in leg volumes for all subjects (n=10) were
averaged and graphed over time (Fig. 7). A relative zero for these data were obtained by
averaging the supine leg volume values for all subjects and arbitrarily anchoring the

percent change in leg volumes to this mean. For statistical analysis, averages.of four 5-

Average Percent Leg Volume Change
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Figure 5. Intervals used for statistical analysis of volume changes
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minute intervals (2 consecutive points) were computed. These four intervals represented
the leg volumes for the different conditions applied in the protocol which were: Stand,
Supine, HDT and HDT + the venoconstrictive cuff applied (HDT+Cuffs). The intervals
are graphically identified in Figure 5.

An analysis of variance determined the significance of differences in leg volumes,
followed by Tukey’s post-hoc test to determine where the differences existed. A
significant difference in HDT and HDT+Cuffs leg volumes would be interpreted as a
positive change in fluid distribution and a successful employment of the thigh cuffs.

Comparison of plethysmography methods. Percent volume change data collected
with the ASP were compared to data collected with the strain gauge plethysmograph. In
order to perform the comparison, eight intervals (Stand 1 (STD1), Supine 1 (SUPI),
Supine 2 (SUP2), HDT 1, HDT 2, HDT 3, HDT+Cuffs and HDT 4) were selected to

represent the percent leg volume change value for significant stages of the protocol (See
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Figure 6. Intervals used for statistical analysis of ASP-strain gauge data and hemodynamic data
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Figure 6 for graphic depiction of intervals). For the anthropometric measurements, each
- interval represented the average of two measurements (five minutes apart), while in the
strain-gauge measurements, the interval represented the average of five minutes of
continuous data. Due to poor strain-gauge data collected in one subject, only nine sets of
data were evaluated (n=9). Paired two-tailed student t-tests were performed between ASP
and strain-gauge values for corresponding intervals. A validation of the null hypothesis
(no significant difference between measurements) would be interpreted to establish
strain-gauge plethysmography as a viable method for measuring change in leg volume. A
correlation/regression was also performed with the strain gauge and ASP data to
substantiate the t-test results.

Hemodynamic changes. Hemodynamic data (HR, SBP, DBP) were collected and
averaged (n=10). These data were divided into eight 5-minute intervals in the same
manner described for the plethysmograph comparison, resulting in interval averages for
STD, SUP1, SUP2, HDT 1, HDT 2, HDT 3, HDT+Cuffs, HDT4 (Figure 6). An ANOVA
was performed on all intervals. Since this tilt protocol incorporated a NASA Operational
Stand Test (29 min supine, 10 min stand) at the outset, the resultant measurable and
significant hemodynamic changes were used to assess the sensitivity of the measurement
methods. A second ANOVA was then performed, excluding the STD interval to
determine whether there were any other significant hemodynamic changes for the
duration of the protocol. Validation of the null hypothesis would be interpreted as the
cardiovascular systems ability to regulate arterial pressure without compromise for the
duration of the protocol, and the inability of venoconstrictive> cuffs to modify

Jhemodynamic variables.
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CHAPTER IV

RESULTS

The stand-supine, supine-HDT and HDT-HDT+Cuffs leg volumes were all
significantly different (p<0.01). While application of the venoconstrictive cuffs caused
leg volumes to trend toward values exceeding those seen even in the supine position,
these volumes (Supine-HDT+Cuffs), however, were not significantly different (Fig. 7).

Postural Leg Volume Changes. An average of 162 ml (3.00% increase in leg
volume) of fluid shifted down to the instrumented leg during standing. This equates to
~ about 300 ml of total fluid movement to both legs when moving from supine to standing.
Meanwhile exposure to -12° HDT caused a mean 106 ml volume (-1.97%) deficit in one
leg, ~200 ml total. These data taken together demonstrate an approximate loss of 0.5
litérs of fluid (-4.97%) from both of the legs in the transition from standing to the -12°
HDT position (Table 1).

Table 1. Volume and Percent Volume Change Data (note: the knee segment was not included in the thigh
and calf calculations; meantS.D.).

Interval Avg. Absolute Avg. Vol.A %A from %A in Thigh %A in Calf
Leg Vol. (ml) from Supine Supine Vol. Vol.

Stand (STD) 56641733 162+44 3.00£0.96 3.06+1.30 3.08+0.68

Supine (SUP) 5501+729 -1£13 0+0.26 -0.0610.29 -0.0410.42

HDT 53974745 -106+50 -1.97+1.04 -2.06+1.12 -2.10+0.99

HDT+Cuffs 5553+744 51+50 0.94+0.97 1.52+1.17 0.4410.92

Cuff-Induced Leg Volume Changes. The inflation of venoconstrictive thigh cuffs

to 50 mmHg significantly increased leg volumes from the -1.97% seen in -12° HDT to
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0.94%, an overall 2.91% increase. This percent increase in leg volume is essentially
identical to the 3.00% increase seen with moving from supine to standing. Initially
diminished outflow caused by the venous occlusion resulted in 157 ml of volume to be
restored to the ASP-instrumented leg, suggesting a total shift of ~300 ml to the legs.

Calf and Thigh Volume Changes. The percentage of volume change measured in'
the calf and thigh were essentially identical for all intervals except during cuff inflation
(Table 1). Calf volume increased only 2.5% while thigh volume increased an average of
3.6%. An assessment of whether the thigh or calf contributed more to total volume
changes was not undertaken due to the restricted nature of the volume measurements.
Since only the lower two-thirds of the thigh were compared to the whole calf, the results

of this analysis would have been skewed.

Table 2. Comparison Between Anthropometric and Strain Gauge Measurements.

Interval ASP Strain Gauge p value
Measurements (% (% Leg vol. A)
Leg vol. A)
Stand (STD) 3.36+0.99 3.04£1.01 0.57
Supine 1 (SUPI) 0.18+0.48 -0.05+0.22 0.17
Supine 2 (SUP2) -0.11+0.52 -0.3610.26 0.21
HDT1 -1.6740.74 -1.5810.68 0.68
HDT2 -1.911+0.75 -1.8440.86 0.82
HDT3 -2.09+0.83 -2.0611.06 0.93
HDT+Cuffs 0.51+0.72 0.8310.97 0.39
HDT4 -2.2610.72 -2.00+1.23 0.54

The measurements made by the Anthropometric Sleeve Plethysmograph (ASP)
and the strain gauge plethysmograph were very similar and no significant differences
were found (p>0.05) (Fig. 8 and Table 2). The strain gauge, however, seeﬁled to measure
greater volume changes than those made anthropometrically. A correlative/regression

analysis demonstrated a significant positive relationship (r=0.86, p<0.01), supporting the
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use of strain gauge plethysmography as a relatively accurate volume measurement tool
(Fig. 9).

The hemodynamic variables measured during the stand interval were significantly
different (except SBP) from those seen during the rest of the protocol (p<0.01). This
attests to the sensitivity of instrumentation used to monitor hemodynamic changes.
However, after the stand interval, there were no further significant changes in heart rate

and blood pressure (Fig. 10).

The ASP...A Natual Plthgsmogtaph
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CHAPTER V

DISCUSSION

Results of research conducted in the late 1960’s led investigators to discard
venous occlusion cuffs as a potential countermeasure to cardiovascular deconditioning.
In light of their specific research objectives, the decision to terminate this research
direction in favor of other potential countermeasures was a logical one. Data from these
ground studies and from spaceflight missions demonstrated little cérdiovascular response
to the inflation of both thigh and arm cuffs. Furthermore, the cuff protocols did not
improve tolerance to post-study orthostatic challenge (79,81,82,83). The hemodynamic
data obtained in this study corroborate previous studies. No significant cardiovascular
responses (HR, SBP, DBP) were seen during the inflation of the venoconstrictive cuffs
and this failure to elicit any measurable response, points to an inconsequential level of
challenge.

Countermeasures are generally applied to fulfill one of two objectives. To be
successful, the prot;>c01 must either significantly support or challenge the cardiovascular
system, or both. Lower Body Negative Pressure was utilized in Skylab and early shuttle
missions as an operational countermeasure. Negative pressure caused fluid to pool in the
lower body, forcing the cardiovascular system to regulate arterial pressure and maintain

cerebral perfusion (See Equations 1-3 recorded earlier in this document). This type of
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challenge is intended to attenuate the deconditioning process, by maintaining
baroreceptor viability and vascular smooth muscle tone, and to ultimately result in an
increased tolerance to normal-g orthostasis. Exercise in space serves a similar role. A
rigorous and consistent exercise program challenges the cardiovascular system to respond
to an increased workload. In addition, Convertino et al. (17) recently demonstrated that a
maximal bout of exercise increases plasma volume, and proposed that if accomplished
prior to re-entry, the increases could support an otherwise volume-depleted crewmember.

This supportive aspect of exercise is also demonstrated by other countermeasures
such as fluid loading or g-suits. Ingestion of isotonic saline prior to re-entry has been
successfully used to support blood volumes in astronauts with microgravity-induced
hypovolemia (11). Likewise, pressure garments such as the ‘g-suit’ assist in the
maintenance of arterial pressures by establishing a viable fluid distribution in the upper
body (67). Contrary to the role of ‘challenging’ countermeasures these ‘supportive’
countermeasures are not designed, or expected, to impede the deconditioning process,
they are intended to aid the deconditioned system in the regulation of cardiovascular
function.

The objectives, protocols and conclusions of previous venous occlusion research
indicate that early investigators (78) - were evaluating cuffs as a ‘challenge’
countermeasure only. When occlusive cuffs were not found to induce adequate challenge
on the cardiovascular system, in an effort to slow microgravity-induced deconditioning,
the whole idea was discarded. The goal of the present study, however, was to

demonstrate the basis for potential use of venoconstrictive cuffs as a supportive
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countermeasure, by serving as an adjunct to existing countermeasures, and as a possible
remedy to the early symptoms of space adaptation syndrome.

Mechanism of Venoconstrictive Cuff Action. As the present study demonstrated,
partial occlusion of the lower limb venous vasculature results in increased leg volumes
due to a reduced venous outflow. While this seems intuitively obvious, and has been
demonstrated with numerous compliance studies (9,14,15,16,57,72,85) the magnitude,
time course and relative distribution of the fluid shift have not been fully appreciated. In
addition, compliance studies often occlude venous flow immediately proximal to the
knee, not at the proximal thigh, and utilize strain gauge plethysmography to measure
volume and subsequently derived changes in compliance (14,15,16,72). While this study
has demonstrated that strain-gauge measurements are a relatively accurate index of leg
volume changes, absolute volume measurements cannot be made.

In their study describing the fluid shifts seen with various simulations of
microgravity, Thornton et al. (70) employed volume-pressure curves to explain the
mechanism and degree of fluid shifts seen during 1-g standing, 1-g supine and
microgravity. Using various data describing peripheral venous pressure in the calf during
standing (100 ¢cmH,0) (70) and in the ankle while horizontal (16 cmH,0) (90), and
assuming the peripheral venous pressure found in the arm while in microgravity (5-7
cmH,0) (49) is a reasonable estimate of calf venous pressure, a volume-pressure curve
can be charted against known calf volume changes for the same conditions (Fig. 11). The
high compliance indicated by the steep slope of the low pressure section of the curve

suggests that in microgravity, small external pressures applied to the tissue can result in
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sizable volume changes (70). This application of pressure, then, is the fundamental

premise for the use of venoconstrictive cuffs.

Pressure-Volume Curve
1-g Stand

10 20 40 60 190
21
3 -g Supine
51
61

% Leg Volume Change

-8 1
91

Microgravity

Estimated Calf Venous Pressure (cmH20)

Fig. 11. Estimated pressure-volume relationship for the calf. (Adapted from Thornton et al. [70])

Inflation of the venoconstrictive cuffs causes only partial occlusion of the venous

flow from thé legs. Both Katkov et al. (47) and Gazenko et al. (26) suggested that the
superficial veins are affected the most, while the deep veins remain relatively patent.
External compression essentially ‘removes’ these superficial veins as a part of the viable
circulation and the excess flow is handled by deep collateral circulation (26,47). While
cadaver studies showed that external pressures of 200 to 400 mmHg were transmitted
through the tissue to the cdre of the leg to occlude deep venous flow, only a fraction of
those pressures were used in this and previous studies (18). Buckey et al. (10), on the
other hand, demonstrated that the deep veins are responsible for 90% of volume changes
seen with low (40 mmHg) occlusive pressures. Regardless, thigh cuff inflation results in

increased leg volumes and a subsequent change in fluid distribution.
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The fluid distribution achieved by the application of venoconstrictive cuffs is
more ‘earth-like’ in that a significantly greater volume of blood resides in the legs. The
similarities to 1-g fluid distribution, however, stop there. Use of the cuffs in simulated
microgravity essentially divides the body into two compartments, with the lower
compartment containing a greater percentage of the circulating blood volume than before.
The fluid distribution seen in a standing individual, on the other hand, is a true gradient
established by the hydrostatic component of the fluid column. Taken as a whole, the
cuffs cause more volume to accumulate in the legs, yet the volume gradients within the
respective compartments reveals how dissimilar they are to the total fluid distribution on
Earth. The volumes in both compartments are still subject to resident forces, which in
HDT is a component of the reversed hydrostatic gradient. So instead of one compartment
(the whole body) with a reversed fluid distribution, the cuffs create two fluid

compartments with reversed fluid distributions. This concept is presented in Figure 12.

-12HDT

HDT with Venoconstrictive Cuffs

149 Microgravity

Figure 12. Relative fluid volume distributions under different conditions. Notice the
similarities between Microgravity and -12°HDT. While leg volumes are increased, the
overall fluid distribution seen with calf inflation is different from that seen in 1-g.
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Data from this study substantiate the presence of this ‘inverted’ leg fluid distribution
during occlusion. Cuff application caused greater volume increases in the thigh (+3.6%)
than in the calf (+2.5%), demonstrating that even as the volume was accumulating, it was
doing so in response to hydrostatic forces.

Venous occlusion caused an average 2.91% increase in leg volume from the
starting HDT values. While the absolute volumes did not reach the values seen with
standing, the relative change is comparable to the 3.00% leg volume increase when
mqving from supine to standing. One can speculate as to the reasons why the cuffs did
not cause leg volumes to increase more than they did. First of all, the occlusive pressures
used were not sufficient to completely occlude venous outflow. Higher pressures would
have resulted in greater volume accumulations, as venous compliance studies have
" demonstrated, but the 50 mmHg used in this study provided sufficient fluid shifts with
minimal subject discomfort.

Investigations conducted by Parazynski et al. (64) and Aratow et al. (2) found that
during head down tilt microvascular flow of the upper body was not controlled as well as
flow to the foot during the upright posture. This points towards a diminished capability
to regulate flow/volume in the upper body. Likewise, Hinghofer-Szalkay et al. (37)
found that plasma and blood density increased in subjects during -12° HDT as compared
to the supine posture. Pressures in the peripheral compartments increase as the
hydrostatic component increases with tilt. As these pressures increase, protein-rich
plasma is forced from the vascular space causing a concomitant increase in blood density.

These data indicate a net shift of fluid into the thoracocephalic extravascular space
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resulting in the blood and plasma volume reductions seen during both real and simulated
microgravity. Subsequently, when cuffs are applied, this diminished total volume may
result in reductions in the volume of fluid trapped in the legs.

The relative changes in leg volume caused by cuff application in microgravity
should be greater than those seen in ground based studies, such as the current study. Calf
venous pressures seen in the normal 1-g supine position were higher than those estimated
to exist in microgravity. Thornton et al. (70) suggested that this may be due to the weight
of abdominal contents pushing on the venous vasculature, providing enough transmural
pressures to maintain distal venous pressures. Removal of this weight in microgravity
not only contributes to greater leg volume reductions, but also increases leg venous
compliance as the cephalad fluid movement causes venous vasculature to shift to the
steeper portion of the volume-pressure curve (Figure 11). Therefore, the pressures
applied by the cuffs in microgravity should result in greater increases in leg volume than
those seen on the ground.

Comparison to the Existing Literature. Leg volume changes seen with HDT in
this study are comparable to those described by previous investigators. However, there is
a tendency in previous studies to compare leg volume changes without establishing what

_posture was used for baseline measurements. Therefore, special care has been taken to
report comparable percentage changes in the following discussion.

Standing to_Supine comparisons. Thornton et al. (70) reported a 1.5% reduction
in leg volume from standing measurements, after 30 minutes in the supine posture. An
additional 60 minutes in the horizontal position resulted in a further 1% decrease.

Panferova et al. (63) saw a 0.7% decrease in leg volume after 1 hour in the supine
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position and -1.5% decrease after 2 hours. Data from this study suggest a slightly greater
decreasé (-2.91%) in volume when moving from standing to supine (after 30 minutes).

Supine to HDT comparisons. Thornton et al. (70) described no further
significant leg volume changes when moving to -6° HDT after 30 minutes of supine
posture. Panferova et al. (63), however, noted a 1% decrease in leg volume after 1 hour
exposure to -12° HDT following 15 min of supine posture. Their data are similar to the
present study, where exposure to 30 minutes of -12° HDT elicited a further 1.97%
decrease in leg volume. Obviously,. differences in the degree of HDT play a role in the
magnitude of the fluid shifts.

Stand to HDT comparisons. The total magnitude of fluid shift seen in the present
study was also comparable to that seen in previous investigations. Nixon et al. (62) saw a
5.0% reduction from standing total leg volume after 30 minutes of -5° HDT. Results
from the present study are similar, with a 4.97% reduction in leg volume after 30 minutes
of supine posture followed by another 30 minutes of -12° HDT.

Thigh and Calf comparisons. Thornton et al. (70) indicated that whjlé a greater
percentage of volume was lost from the calf than from the thigh during -6° HDT, the
thigh lost relatively more volume in microgravity (60). Results from the present study
demonstrated no significant difference in the percentage of volume lost from the calf and
thigh during -12° HDT. Further comparisons are detailed in Table 3.

Time course of fluid shifts. While previous studies have described the magnitude
of fluid shift during HDT, the earliest recorded volume changes were taken no earlier

than 30 minutes after initiation of tilt. The present study describes the time course of
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fluid shifts in S-minute intervals. As seen in Figure 7, the majority of fluid shifting
occurred after 5 minutes of supine exposure, following the transition from standing.
When moving from supine to -12° HDT, 84% of the fluid shift had taken place after 10

minutes.

Table 3. Comparison of Previously Reported Leg Volume Changes. *note: this total volume measurement does not account
for the top third of the thigh where the venoconstrictive cuff was located. (adapted from Thornton et al. [70])

Study Condition n Measured Average Time % Volume % Volume
Segment Segment Course of A from A from
Volume (£) Exposure Supine Stand
(hours)

Nixon et al. (62) 5°HDT 6 Leg - single leg 7.5 0.5 -5.0 -
2 -8.0 ---

Hargens (36) 5°HDT 4 Calf - single leg 34 0.5 -5.6 -
Panverova et al. Horizontal 10 Leg - both legs 16.4 1 - -0.7
(63) 2 - -1.5
4 - -1.8

12° HDT 10 Leg - both legs 16.4 1 -1.0 -

2 -1.0 -

4 =25 -

22° HDT 10 Leg - both legs 16.4 1 4.3 -

2 -5.8 -

4 -1.7 -—-

Thornton et al.(70) Horizontal 6 Calf - single leg - 22 1.5 - -4
Thigh - single leg 6.0 1.5 - 2

Leg - single leg 93 5 - -1.5

' 1.5 2.5 -

6° HDT 6 Calf - single leg 22 1.5 -1.5 -

Thigh - single leg 6.0 1.5 0 -

Leg - single leg 9.3 L5 0 -

Immersion 6 Calf - single leg 22 L5 o3 -

Thigh - single leg 6.0 1.5 .3 -—

Leg - single leg 9.3 1.5 2.5 ——
Lindgren 12° HDT 10 Calf - single leg 2.4 5 -2.1 5.2
Thigh - single leg — 5 -2.1 5.1
Leg - single leg 5.7* S 2.0 -5.0

Thomton et al.(71)  Spaceflight 3 Calf - both legs 44 -48 9.0 —
(Skylab) Thigh - both legs 9.9 48 -14.0 -

Leg - both legs 15.4 48 -12.5 —
Moore et al. (60) Spaceflight 3 Calf - single leg 3.0 10 - -6.0
(Shuttle) Thigh - single leg 5.1 10 - 9.8
Leg - single leg 8.1 10 — -8.4

Potential Uses for Venoconstrictive Thigh Cuffs. There are a number of potential
uses for venoconstrictive cuffs in an operational setting. Cuffs were employed by
cosmonauts on Soyuz-38, reportedly reducing symptoms of space adaptation syndrome

(dizziness, congestion and headaches) (56). While these symptoms are not life
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threatening, they can impair on a crewmember’s ability to conform to tight operational
schedules. A reduction of the central volume should result in decreased cephalic volumes
and pressures and in a subsequent reduction in congestion and edema. Some
investigators have suggested that the initial fluid shift may play a role in Space Motion
Sickness, and while this has been hypothesized to be unlikely, any potential for reducing
the initial bouts of nausea and dizziness should be pursued (4,65). One might speculate
that occlusive cuffs may lengthen the overall adaptation time, however, since reducing
central and cephalic volumes should also reduce the magnitude of stimulation at
centrally-located volume and pressure sensors. If this is the case, cuff use during the
initial exposure to microgravity might represent a trade off between a short adaptation
period characterized by acute discomfort, or a cuff-lengthened adaptation with diminished
symptoms. Venoconstrictive cuffs could also be utilized prior to re-entry as an adjunct to
existing countermeasures. The ‘soak’ protocol is a countermeasure regimen which
utilizes fluid loading in conjunction with LBNP (67). With the elimination of LBNP
from the current operational inventory, it is possible that venoconstrictive cuffs could
serve as a replacement in potentiating fluid loading effectiveness. By sequestering a
greater percentage of the plasma volume in the legs, the cuffs could cause the central
volume to fall below its microgravity-adapted set point, allowing the newly acquired
“fluid loaded’ volume to remain in circulation without inducing a compensatory diuresis.
The venoconstrictive cuffs could essentially create more space in the vasculature for the
ingested fluid. By keeping an increased volume in the lower compartments and away
from the volume regulating stretch receptors in the upper body, the astronauts should be

able to increase total fluid volumes in preparation for imminent orthostatic challenge.
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Concerns with this Study. There were a number of areas in this study that could

have benefited from closer attention.

1

2)

3)

4

5)

The time course and application of conditions during the protocol could have
been documented more accurately. While this had no effect on the results, it
did require extensive backtracking through the strain-gauge data to ensure that
comparison intervals were correctly aligned with corresponding ASP
intervals.

Greater emphasis could have been placed on keeping the subjects from
moving during the protocol. Movement caused considerable ‘noise’ in the
strain gauge output. While the data were usable, filtering was required.

A leak in the pressure system caused the occlusive cuffs to leak slowly during
the inflation period. The cuff pressures had to be nudged up two or three
times, causing the occlusion pressure to fluctuate between 45 and 55 mmHg.
While this should have had little impact on the overall results, an airtight
pressure system would have been ideal.

Impedance plethysmography would have provided fluid shift data for the
upper body, further corroborating the changes seen in the legs. Unfortunately,
the system malfunctioned and the data were unusable. Availability of a
backup system would have been preferable.

The low sampling rate (every 5 minutes) used to take hemodynamic data may
have missed transient changes induced by any of the applied conditions.

Continuous heart rate and blood pressure monitoring and data collection
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would have better established any significant transient hemodynamic
variability.

Future Research. While this study establishes a basis of information concerning
the use of venoconstrictive thigh cuffs, ohly further research can establish their usefulness
in an operational setting.

1) A HDT study should be conducted, during which measures of calf interstitial
pressures and total plasma volume should be made during thigh cuff
application to see how the lower body extravascular compartment is affected.
If it is increased, it could point to a large volume reservoir for fluid loading.

2) A study should be conducted to assess the ability of venoconstrictive thigh
cuffs to potentiate the effects of LBNP and exercise-LBNP.

3) A study should be conducted to determine the role of venoconstrictive cuffs in
reducing fluid shifts during exposure to the pre-launch position.

4) A bedrest or HDT study should be conducted to determine What effects
venoconstrictive cuffs have on fluid loading or other volutropic protocols. If
greater plasma volumes are achieved, or if increased orthostatic tolerance is

apparent, this combined countermeasure should be assessed in a flight setting.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

“I believe that this nation should commit itself, to achieving the goal,

before this decade is out, of landing a man on the moon, and returning

him safely to the Earth.”

- PRESIDENT JOHN F. KENNEDY, 25 MAY 1961

No part of President Kennedy’s historic challenge to the nation was more
important than “returning him safely to the Earth.” The priority embodied in these words
remains with us today, as no mission, whether to low earth orbit or to Mars, can be a
success if the crewmembers are not returned ‘safely to the Earth.” Long duration
exposure to microgravity has deleterious effects on the human body. The extent of bone
and mineral loss, muscle atrophy, and cardiovascular deconditioning, brings into question
whether planetary exploration-length missions can be endured by the crew. Despite
intensive research in this arena, no method has been developed that completely preserves
the human body from the rigors (or lack thereof) of long duration spaceflight.

The results of the present study have verified the initial hypothesis, that bilateral
venoconstrictive thigh cuffs, applied at 50 mmHg during simulated (-12° HDT)

microgravity, impede venous flow sufficiently to create a more ‘Earth-like’ fluid

distribution. This hypothesis was verified by accomplishing the stated specific aims:
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1. Leg volumes were measured (minus impedance plethysmography) and
analyzed. A significant difference was found between leg volumes during
HDT and HDT+Cuffs permitting the conclusion that the application of
venocclusive cuffs can favorably alter the HDT fluid distribution.

2. Leg volume measurements were made at 5-minute intervals, allowing the time
course of fluid shifts to be appreciated in a resolution not previously
described.

3. The statistical and correlation/regression analysis performed on corresponding
rﬁeasurement data establish single-plane strain gauge plethysmography as a
valid index of whole leg volume changes.

4. No significant cardiovascular changes were induced by cuff inflation,
allowing a non-hypothesized conclusion that occlusive cuffs impart minimal
challenge to the cardiovascular system.

The results of the present study demonstrate a potential avenue for further
research and countermeasure therapy. Extensive research remains to be done in
describing how the body respondé to microgravity, and how to counter these responses.
The small number of subjects and limited opportunities to investigate true microgravity,
make ground studies invaluable in adding to the growing body of knowledge.

It is in this light that this study was conducted; to contribute a smail amount of
knowledge to the constellation of that which is known, in another small step towards the

vastness of that which remains to be discovered.
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APPENDIX A

INDIVIDUAL ANTHROPOMETRIC SLEEVE FIGURES

*note: in the following charts, the first square marker represents the first volume measurement.
The next measurement was taken 15 min later and in five minute intervals thereafter.
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APPENDIX B

INDIVIDUAL ANTHROPOMETRIC AND HEMODYNAMIC MEASUREMENTS
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APPENDIX C

INDIVIDUAL FILTERED STRAIN GAUGE DATA FIGURES
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